Brotação e metabolismo de raízes de batata-doce cv. BRS Rubissol durante armazenamento - DOI:10.5039/agraria.v14i3a6204

Paula Cristina Carvalho Lima, Mirelle Nayana Sousa Santos, Fernanda Ferreira de Araújo, Jean Paulo de Jesus Tello, Fernando Luiz Finger

Resumo


A brotação e perda de massa em raízes tuberosas de batata-doce armazenadas à temperatura ambiente comprometem a qualidade e comercialização, ainda assim, métodos de controle de brotação são muito limitados. O objetivo foi avaliar o controle da brotação e alterações metabólicas em raízes tuberosas de batata-doce cv. BRS Rubissol tratadas com etileno (10 μL L-1), ácido amino-oxiacético - AOA (1 mg L-1) e 1-metilciclopropeno - 1-MCP (1 mg L-1) durante o armazenamento por cinco semanas a 25 °C e 90% de umidade relativa. Foram avaliadas as variáveis: perda de massa, número e comprimento de brotações, atividade das enzimas peroxidase e polifenoloxidase, açúcares solúveis totais, amido, antocianinas, flavonois, teor de malonaldeído e proteínas totais. Durante o armazenamento a perda de massa, número e comprimento de brotações foram menores em raízes tratadas com AOA e 1-MCP. A atividade das enzimas peroxidase e polifenoloxidase foi maior em raízes tratadas com etileno. Os açúcares solúveis totais aumentaram e os teores de amido reduziram em todos os tratamentos. Os níveis de antocianinas e proteínas totais reduziram, enquanto os de flavonois e malondialdeído aumentaram durante o armazenamento. A brotação foi controlada em raízes tratadas com AOA e 1-MCP, prolongando a vida útil e melhorando o potencial de comercialização.

Palavras-chave


carboidratos; etileno; Ipomoea batatas; decadência da raiz; controle da brotação

Texto completo:

PDF (English)

Referências


Amoah, R. S.; Terry, L. A. 1‐Methylcyclopropene (1‐MCP) effects on natural disease resistance in stored sweet potato. Journal of the Science of Food and Agriculture, v. 98, n. 12, p. 4597-4605, 2018. https://doi.org/10.1002/jsfa.8988.

Amoah, R.S.; Landahl, S.; Terry, L.A. The timing of exogenous ethylene supplementation differentially affects stored sweet potato. Postharvest Biology and Technology, v. 120, p. 92-102, 2016. https://doi.org/10.1016/j.postharvbio.2016.05.013.

Amornputtia, S.; Ketsaa, S.; Van Doornc, W.G. 1-Methylcyclopropene (1-MCP) inhibits ethylene production of durian fruit which is correlated with a decrease in ACC oxidase activity in the peel. Postharvest Biology and Technology, v. 114, p. 69-75, 2016. https://doi.org/10.1016/j.postharvbio.2015.11.020.

Arancibia, R.A.; Main, L.J.; Clark, C.A. Sweet potato tip rot incidence is increased by preharvest applications of ethephon and reduced by curing. HortTechnology, v. 23, n. 3, p. 288-293, 2013. https://doi.org/10.21273/HORTTECH.23.3.288.

Benjamin, N.D; Montgomery, M.W. Polyphenol oxidase of royal ann cherries: purification and characterization. Journal of Food Science, v. 38, n.5, p. 799-806, 1973. https://doi.org/10.1111/j.1365-2621.1973.tb02079.x.

Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, v. 72, n. 1-2, p. 248-254, 1976. https://doi.org/10.1016/0003-2697(76)90527-3.

Cavalcante, M.; Ferreira, P.V.; Paixão, S.L.; Costa, J.G.; Pereira, R.G.; Madalena, J.A.S. Potenciais produtivo e genético de clones de batata-doce. Acta Scientiarum Agronomy, v. 31, n.3, p. 421-426, 2009. https://doi.org/10.4025/actasciagron.v31i3.835.

Cheema, M.U.A.; Reesa, D.; Colgana, R.J.; Taylorb, M.; Westbya, A. The effects of ethylene, 1-MCP and AVG on sprouting in sweetpotato roots. Postharvest Biology and Technology, v. 85, p. 89–93, 2013. https://doi.org/10.1016/j.postharvbio.2013.05.001.

Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Analytical Biochemistry, v. 28, n. 3, p. 350-356, 1956. https://doi.org/10.1021/ac60111a017.

Dubois, M.; Van Den Broeck, L.; Inzé, D. The Pivotal Role of Ethylene in Plant Growth. Trends in Plant Science, v. 23, n. 4, p. 311-323, 2018. https://doi.org/10.1016/j.tplants.2018.01.003.

Foloni, J.S.S.; Corte, A.J.; Corte, J.R.N.; Echer, F.R.; Tiritan, C.S. Adubação de cobertura na batata-doce com doses combinadas de nitrogênio e potássio. Semina: Ciências Agrárias, v. 34, n.1, p. 117-126, 2013. https://doi.org/10.5433/1679-0359.2013v34n117.

Foukaraki, S.G.; Cools, K.; Chope, G.A.; Terry, L.A. Impact of ethylene and 1-MCP on sprouting and sugar accumulation in stored potatoes. Postharvest Biology and Technology, v. 114, p. 95-103, 2016b. https://doi.org/10.1016/j.postharvbio.2015.11.013.

Foukaraki, S.G.; Cools, K.; Terry, L.A. Differential effect of ethylene supplementation and inhibition on abscisic acid metabolism of potato (Solanum tuberosum L.) tubers during storage. Postharvest Biology and Technology, v. 112, p. 87-94, 2016a. https://doi.org/10.1016/j.postharvbio.2015.10.002.

Hajirezaei, M.R.; Börnke, F.; Peisker, M.; Takahata, Y.; Lerchl, J.; Kirakosyan, A.; Sonnewald, U. Decreased sucrose content triggers starch breakdown and respiration in stored potato tubers (Solanum tuberosum). Journal of Experimental Botany, v. 54, n. 382, p. 477-488, 2003. https://doi.org/10.1093/jxb/erg040.

Hodges, D. M.; Delong, J. M.; Forney, C. F.; Prange, R. K. Improving the thiobarbituric acid‐reactive‐substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, v. 207, n. 4, p. 604-611, 1999. https://doi.org/10.1007/s004250050524.

Hu, X.; Kuang, S.; Zhang, A.D.; Zhang, W.S.; Chen, M.J.; Yin, X.R.; Chen, K.C. Characterization of starch degradation related genes in postharvest kiwifruit. International Journal of Molecular Sciences, v. 17, n. 12, article 2112, 2016. https://doi.org/10.3390/ijms17122112.

In, B.C.; Strable, J.; Binder, B.M.; Falbel, T.G.; Patterson, S.E. Morphological and molecular characterization of ethylene binding inhibition in carnations. Postharvest Biology and Technology, v. 86, p. 272-279, 2013. https://doi.org/10.1016/j.postharvbio.2013.07.007.

Ji, C.Y.; Ghung, W-H.; Kim, H.S.; Jung; W.Y; Kang, L.; Jeong, J.C.; Kwak, S-S. Transcriptome profiling of sweetpotato tuberous roots during low temperature storage. Plant Physiology and Biochemistry, v. 112, p. 97-108, 2017. https://doi.org/10.1016/j.plaphy.2016.12.021.

Karimi, M.; Hassanpour, A.; Zakizadeh, H. Increasing plant longevity and associated metabolic events in potted carnation (Dianthus caryophyllus L. Clove Pink). Brazilian Journal of Plant Physiology, v. 24, n. 4, p. 247-252, 2012. https://doi.org/10.1590/S1677-04202012000400003.

Khan, A.A.; Robinson, D.S. Hydrogen donor specifity of mango isoperoxidases. Food Chemistry, v. 49, n. 4, p. 407-410, 1994. https://doi.org/10.1016/0308-8146(94)90013-2.

Kumar, M.; Singh, V. P.; Arora, A.; Singh, N. The role of abscisic acid (ABA) in ethylene insensitive gladiolus (Gladiolus grandiflora Hort.) flower senescence. Acta Plant Physiology, v. 36, n.1, p. 151–159, 2014. https://doi.org/10.1007/s11738-013-1395-6.

Li, X.; Yang, H.; Lu, G. Low-temperature conditioning combined with cold storage inducing rapid sweetening of sweetpotato tuberous roots (Ipomoea batatas (L.) Lam) while inhibiting chilling injury. Postharvest Biology and Technology, v. 142, p. 1–9, 2018. https://doi.org/10.1016/j.postharvbio.2018.04.002.

Liu, Q. Improvement for agronomically important traits by gene engineering in sweetpotato. Breeding Science, v. 67, n.1, p. 15–26, 2017. https://doi.org/10.1270/jsbbs.16126.

Mani, F.; Bettaieb, T.; Doudech, N.; Hannachi, C. Physiological mechanisms for potato dormancy release and sprouting: a review. African Crop Science Journal, v. 22, n. 2, p. 155-174, 2014. https://www.ajol.info/index.php/acsj/article/viewFile/104945/94994. 02 Sep. 2018.

Markovic, J.M.D.; Milenkovic, D.; Amie, D.; Popovic-Biijelic, A.; Mojovic, M.; Pasti, I.A.; Markovic, Z.S. Energy requirements of the reactions of kaempferol and selected radical species in different media: towards the prediction of the possible radical scavenging mechanisms. Structural Chemistry, v. 25, n. 6, p. 1795–1804, 2014. https://doi.org/10.1007/s11224-014-0453-z.

Marszalek, K.; Wozniak, L.; Kruszewski, B.; Skapska, S. The Effect of High Pressure Techniques on the Stability of Anthocyanins in Fruit and Vegetables. International Journal of Molecular Sciences, v. 18, n. 2, article 277, 2017. https://doi.org/10.3390/ijms18020277.

Mathooko, F.M.; Tsunashima, Y.; Owino, W.Z.O.; Kubo, Y.; Inaba, A. Regulation of genes encoding ethylene biosynthesis enzymes in peach (Prunus persica L.) fruit by carbon dioxide and 1-methylcyclopropene. Postharvest Biology and Technology, v. 21, n. 3, p. 265-281, 2001. https://doi.org/10.1016/S0925-5214(00)00158-7.

Murray, J.R.; Hackett, W.P. Dihydroflavonol reductase activity in relation to differential anthocyanin accumulation in juvenile and mature phase Hedera helix L. Plant Physiology, v. 97, n. 1, p. 343-351, 1991. https://doi.org/10.1104/pp.97.1.343.

Musilová, J.; Bystrická, J.; Árvay, J.; Harangózo, L. Poliphenols and phenolic acids in sweet potato (Ipomoea batatas L.) roots. Potravinarstvo Slovak Journal of Food Sciences, v. 11, n. 1, p. 82-87, 2017. https://doi.org/10.5219/705.

Rees, D.; van Oirschot, Q.; Kapinga, R.; Mtunba, K.; Chilosa, D.; Mbilinyi, M.B.; Rwiza, E.J.; Kilima, M.; Kiozya, H.; Amour, R.; Ndondi, T.; Chottah, M.; Mayona, C.M.; Mende, D.; Tomlins, K.I.; Aked, J.; Carey, E.E. Extending root shelf-life during marketing by cultivar selection. In: Rees, D.; van Oirschot, Q.; Kapinga, R. (Eds.). Sweetpotato post-harvest assessment: experiences from East Africa. Chatman: Natural Resources Institute, 2003, Chap.5, p. 51-66. http://www.sweetpotatoknowledge.org/wp-content/uploads/2016/01/Extending-root-shelf-life-by-selection_book_ch5.pdf. 05 Sep. 2018.

Tang, J.; Hu, K.D.; Hu, L.Y.; Li, Y.H.; Liu, Y.S.; Zhang, H. Hydrogen Sulfide acts as a fungicide to alleviate senescence and decay in fresh-cut sweet potato. HortScience, v. 49, n. 7, p. 938-943, 2014. https://doi.org/10.21273/HORTSCI.49.7.938.

Van de Poel, B.; Smet, D.; Van der Straeten, D. Ethylene and hormonal cross talk in vegetative growth and development. Plant Physiology, v. 169, n. 1, p. 61–72, 2015. https://doi.org/10.1104/pp.15.00724.

Wind, J.; Smeekens, S.; Hanson, J. Sucrose: metabolite and signaling molecule. Phytochemistry, v. 71, n. 14-15, p. 1610–1614, 2010. https://doi.org/10.1016/j.phytochem.2010.07.007.

Xia, X.J.; Zhou, Y.K.; Shi, K.; Zhou, J.; Foyer, C.H.; Yu, J.Q. Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance. Journal of Experimental Botany, v. 66, n. 10, p. 2839-2856, 2015. https://doi.org/10.1093/jxb/erv089.

Yuab, J.; Wanga, Y. The combination of ethoxyquin, 1-methylcyclopropene and ethylene treatments controls superficial scald of ‘d’Anjou’ pears with recovery of ripening capacity after long-term controlled atmosphere storage. Postharvest Biology and Technology, v.127, p.53-59, 2017. https://doi.org/10.1016/j.postharvbio.2017.01.012.


Apontamentos

  • Não há apontamentos.


Direitos autorais 2019 Paula Cristina Carvalho Lima, Mirelle Nayana Sousa Santos, Fernanda Ferreira de Araújo, Jean Paulo de Jesus Tello, Fernando Luiz Finger

SCImago Journal & Country Rank

Google Scholar

2019

h5 index: 10

h5 median: 14

Mais detalhes

Revista Brasileira de Ciências Agrárias (Agrária)

ISSN (ON LINE) 1981-0997

Pró-Reitoria de Pesquisa e Pós-Graduação

Universidade Federal Rural de Pernambuco

Rua Dom Manoel de Medeiros, s/n, Dois Irmãos Recife-Pernambuco-Brasil 52171-900

agrarias.prppg@ufrpe.br

secretaria@agraria.pro.br

 Licença Creative Commons
Todo o conteúdo da Agrária, exceto onde está identificado, está licenciado sob uma licença Creative Commons.