Eficiência do biochar de eucalipto tratado com H2O2 na remoção de Cu (II), Cd (II) e Ni (II) de soluções aquosas - DOI:10.5039/agraria.v15i3a6530

Elias Costa de Souza, Alexandre Santos Pimenta, Alfredo José Ferreira da Silva, Renata Martins Braga, Tatiane Kelly Barbosa de Azevedo, Pedro Nicó de Medeiros Neto

Resumo


O presente trabalho teve como objetivo produzir carvão tratado com H2O2 a partir de madeira de eucalipto e testar sua eficiência na remoção de metais pesados de soluções aquosas. O tratamento oxidante foi realizado por reação do carvão com H2O2 (10% m/m) durante 4 horas com temperatura de 80 °C e pH 8,0. Amostras de biochar frescas e tratadas com H2O2 foram caracterizadas por termogravimetria e análise elementar. O ponto de carga zero e a área superficial específica foram determinadas. Foram realizados testes de cinética de adsorção com Cu (II) e ajustadas as isotermas de Langmuir e Freundlich. Os testes de adsorção foram realizados com uma mistura de cátions Cu (II), Ni (II) e Cd (II) em solução aquosa. A melhor capacidade de adsorção foi alcançada no pH ácido. O carvão tratado com H2O2 teve capacidade de adsorção de 170,41 mg L-1 somente para Cu e 305,35 mg L-1 para a mistura de metais. A adsorção foi mais bem estimada pela isoterma de Langmuir (R2 = 0,9976). Apesar da redução significativa na área superficial específica, o carvão tratado com H2O2 apresentou melhor desempenho na adsorção de metais pesados em comparação com o carvão original, especialmente na presença de mais de um cátion metálico.


Palavras-chave


adsorção de metais pesados; biocarvão; cinéticas de absorção; oxidação com peróxido de hidrogênio

Texto completo:

PDF (English)

Referências


Aller, D.; Rathke, S.; Laird, D.; Cruse, R.; Hatfield, J. Impacts of fresh and aged biochars on plant available water and water use efficiency. Geoderma, v.307, p.114-121, 2017. https://doi.org/10.1016/j.geoderma.2017.08.007.

Angin, D. Utilization of activated carbon produced from fruit juice industry solidwaste for the adsorption of Yellow 18 from aqueous solutions. Bioresource Technology, v.168, p.259-266, 2014. https://doi.org/10.1016/j.biortech.2014.02.100.

Benites, V.M.; Mendonça, E.S.; Schaefer, C.E.G.R.; Novotny, E.H.; Reis, E.L.; Ker, J.C. Properties of black soil humic acids from high altitude rock complexes in Brazil. Geoderma, v.127, n.1-2, p.104-113, 2005. https://doi.org/10.1016/j.geoderma.2004.11.020.

Brazilian Tree Industry – BTI. Report 2017. São Paulo: IBÁ, 2017. 77p. https://www.iba.org/datafiles/publicacoes/pdf/iba-relatorioanual2017.pdf. 07 Mar. 2019.

Cazetta, A.L.; Vargas, A.M.M.; Nogami, E.M.; Kunita, M.H.; Guilherme, M.R.; Martins, A.C.; Silva, T.L.; Moraes, J.C.G.; Almeida, V.C. NaOH-activated carbon of high surface area produced from coconut shell: kinetics and equilibrium studies from the methylene blue adsorption. Chemical Engineering Journal, v.174, n.1, p.117–125, 2011. https://doi.org/10.1016/j.cej.2011.08.058.

Chaudhuri, M.; Kutty, S.R.M.; Yusop, S.H. Copper and cadmium adsorption by activated charcoal from coconut coir. Nature Environment and Pollution Technology, v.9, n.1, p.25-28, 2010. http://neptjournal.com/upload-images/NL-3-4-(4)B-1456.pdf. 10 Mar. 2019.

Cheng, C.H.; Lehmann, J. Aging of black carbon along a temperature gradient. Chemosphere, v.75, n.8, p.1021-1027, 2009. https://doi.org/10.1016/j.chemosphere.2009.01.045.

Cheng, C.-H.; Lehmann, J.; Engelhard, M.H. Natural oxidation of black carbon in soils: changes in molecular form and surface charge along a climosequence. Geochimica et Cosmochimica Acta, v.72, n.6, p.1598-1610, 2008. https://doi.org/10.1016/j.gca.2008.01.010.

Cheng-Chung, L.; Ming-Kuang, W.; Chyow-San, C.; Yuan-Shen, L.; Chia-Yi, Y.; Yu-An, L. Biosorption of chromium, copper and zinc by wine-processing waste sludge: Single and multi-component system study, Journal of Hazardous Materials, v.171, n.1 3, p.386-392, 2009. https://doi.org/10.1016/j.jhazmat.2009.06.012.

Demiral, H.; Güngör, C. Adsorption of copper (II) from aqueous solutions on activated carbon prepared from grape bagasse. Journal of Cleaner Production, v.124, p.103 113, 2016. https://doi.org/10.1016/j.jclepro.2016.02.084.

Ding, Z.; Hu, X.; Wan, Y.; Wang, S.; Gao, B. Removal of lead, copper, cadmium, zinc, and nickel from aqueous solutions by alkali-modified biochar: Batch and column tests. Journal of Industrial and Engineering Chemistry, v.33, p.239-245, 2016. https://doi.org/10.1016/j.jiec.2015.10.007.

Dirbaz, M.; Roosta A. Adsorption, kinetic and thermodynamic studies for the biosorption of cadmium onto microalgae Parachlorella sp. Journal of Environmental Chemical Engineering, v.6, n.2, p.2302-2309, 2018. https://doi.org/10.1016/j.jece.2018.03.039.

Domingues, V.M.F. Utilização de um produto natural (cortiça) como adsorvente de pesticidas piretróides em águas. Porto: Universidade do Porto, 2005. 198p. PhD Thesis. https://hdl.handle.net/10216/12811. 28 Feb. 2019.

Eeshwarasinghe, D.; Loganathan, P.; Vigneswaran, S. Simultaneous removal of polycyclic aromatic hydrocarbons and heavy metals from water using granular activated carbon. Chemiosphere, v. 223, p.616-627, 2019. https://doi.org/10.1016/j.chemosphere.2019.02.033.

Feng, N.; Fan, W.; Zhu, M.; Guo, X. Adsorption of Cd2+ in aqueous solutions using KMnO4-modified activated carbon derived from Astragalus residue. Transactions of Nonferrous Metals Society of China, v.28, n.4, p.794-801, 2018. https://doi.org/10.1016/S1003-6326(18)64712-0.

Frišták, V.; Friesl-Hanl, W.; Wawra, A.; Pipíška, M. Soja, G. Effect of biochar artificial ageing on Cd and Cu sorption characteristics. Journal of Geochemical Exploration, v.159, p.178-184, 2015. https://doi.org/10.1016/j.gexplo.2015.09.006.

Ghaedi, M.; Mazaheri, H.; Khodadoust, S.; Hajati, S.; Purkait, M.K. Application of central composite design for simultaneous removal of methylene blue and Pb2+ ions by walnut wood activated carbon. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, v.135, p.479-490, 2015. https://doi.org/10.1016/j.saa.2014.06.138.

Glaser, B.; Lehmann, J.; Zech, W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal – a review. Biology and Fertility of Soils, v.35, p.219-230, 2002. https://doi.org/10.1007/s00374-002-0466-4.

Gode, F.; Pehlivan, E. Adsorption of Cr(III) ions by Turkish brown coals. Fuel Processing Technology, v.86, n.8, p.875-884, 2005. https://doi.org/10.1016/j.fuproc.2004.10.006.

González, P.G.; Pliego-Cuervo, Y.B. Adsorption of Cd(II), Hg(II) and Zn(II) from aqueous solution using mesoporous activated carbon produced from Bambusa vulgaris striata. Chemical Engineering Research and Design, v.92, n.11, p.2715-2524, 2014. https://doi.org/10.1016/j.cherd.2014.02.013.

González-Garcia, P. Activated carbon from lignocellulosics precursors: A review of the synthesis methods, characterization techniques and applications. Renewable and Sustainable Energy Reviews, v.82, part 1, p.1393–1414, 2018. https://doi.org/10.1016/j.rser.2017.04.117.

Gu, S.-Y.; Hsieh, C.-T.; Gandomi, Y.A.; Yang, Z.-F.; Li, L.; Fu, C.-C.; Juang, R.-S. Functionalization of activated carbons with magnetic Iron oxide nanoparticles for removal of copper ions from aqueous solution. Journal of Molecular Liquids, v.277, p.499-505, 2019. https://doi.org/10.1016/j.molliq.2018.12.018.

Guo, Y.; Tang, W.; Wu, J.; Huang, Z.; Dai, J. Mechanism of Cu(II) adsorption inhibition on biochar by its aging process. Journal of Environmental Sciences, v.26, n.10, p.2123-2130, 2014. https://doi.org/10.1016/j.jes.2014.08.012.

Güzel, F.; Sayğili, H.; Sayğili, G.A.; Koyuncu, F.; Yilmaz, C. Optimal oxidation with nitric acid of biochar derived from pyrolysis of weeds and its application in removal of hazardous dye methylene blue from aqueous solution. Journal of Cleaner Production, v.144, p.260-265, 2017. https://doi.org/10.1016/j.jclepro.2017.01.029.

Jin, J.; Li, S.; Peng, X.; Liu, W.; Zhang, C.; Yang, Y.; Han, L.; Du, Z.; Sun, K.; Wang, X. HNO3 modified biochars for uranium (VI) removal from aqueous solution. Bioresource Technology, v.256, p.247-253, 2018. https://doi.org/10.1016/j.biortech.2018.02.022.

Karthikeyan, S.; Gupta, V.K.; Boopathy, R.; Titus, A.; Sekaran, G. A new approach for the degradation of high concentration of aromatic amine by heterocatalytic Fenton oxidation: kinetic and spectroscopic studies. Journal of Molecular Liquids, v.173, p.153-163, 2012. https://doi.org/10.1016/j.molliq.2012.06.022.

Köseoğlu, E.; Akmil-Başar, C. Preparation, structural evaluation and adsorptive properties of activated carbon from agricultural waste biomass. Advanced Powder Technology, v.26, n.3, p.811-818, 2015. https://doi.org/10.1016/j.apt.2015.02.006.

Kucerík, J.; Kovár, J.; Pekar, M. Thermoanalytical investigations of lignite humic acid fractions. Journal of Thermal Analysis and Calorimetry, v.76, p.55-65, 2004. https://doi.org/10.1023/B:JTAN.0000027803.24266.48.

Lahori, A.H.; Zhang, Z.; Guo, Z.; Mahar, A.; Li, R.; Awasthi, M.K.; Sial, T.A.; Kumbhar, F.; Wang, P.; Shen, F.; Zhao, J.; Huang, H. Potential use of lime combined with additives on (im)mobilization and phytoavailability of heavy metals from Pb/Zn smelter contaminated soils. Ecotoxicology and Environmental Safety, v.145, p.313-323, 2017. https://doi.org/10.1016/j.ecoenv.2017.07.049.

Li, H.; Yang, Y.; Yang, S.; Chen, A.; Yang, D. Infrared spectroscopic study on the modified mechanism of aluminum-impregnated bone charcoal. Journal of Spectroscopy, v.2014, article 671956, 2014. https://doi.org/10.1155/2014/671956.

Liu, Z.; Zhang, F.-S. Removal of lead from water using biochars prepared from hydrothermal liquefaction of biomass. Journal of Hazardous Materials, v.167, n.1-3, p.933-939, 2009. https://doi.org/10.1016/j.jhazmat.2009.01.085

Luna, M.D.G.de; Flores, E.D.; Genuino, D.A.D.; Futalan, C.M.; Wan, M.-W. Adsorption of Eriochrome Black T (EBT) dye using activated carbon prepared from waste rice hulls – optimization, isotherm and kinetic studies. Journal of the Taiwan Institute of Chemical Engineers, v.44, n.4, p.646-653, 2013. https://doi.org/10.1016/j.jtice.2013.01.010.

Melo, D.Q. Remoção de Cu2+ e Zn2+ utilizando esferas de sílica funcionalizadas com EDTA: estudo em batelada e coluna. Fortaleza: Universidade Federal do Ceará, 2012. 93p. http://www.repositorio.ufc.br/handle/riufc/11138. 10 Mar. 2019.

Mia, S.; Dijkstra, F.A.; Singh, B. Long-term aging of biochar: a molecular understanding with agricultural and environmental implications. In: Sparks, D.L. (Ed.). Advances in Agronomy. Cambridge: Academic Press, 2017. v. 141, Chap. 1, p.1-51. https://doi.org/10.1016/bs.agron.2016.10.001.

Miao, Q.; Tang, Y.; Xu, J.; Liu, X.; Xiao, L.; Chen, Q. Activated carbon prepared from soybean straw for phenol adsorption. Journal of the Taiwan Institute of Chemical Engineers, v.44, n.3, p.458–465, 2013. https://doi.org/10.1016/j.jtice.2012.12.006.

Mohammadi, S.Z.; Hamidian, H.; Moeinadini, Z. High surface area-activated carbon from Glycyrrhiza glabra residue by ZnCl2 activation for removal of Pb(II) and Ni(II) from water samples. Journal of Industrial and Engineering Chemistry, v.20, n.6, p.4112-4118, 2014. https://doi.org/10.1016/j.jiec.2014.01.009.

Moreira, S.A.; Sousa, F.W.; Oliveira, A.G.; Nascimento, R.F. do; Brito, E.S. Remoção de metais de solução aquosa usando bagaço de caju. Química Nova, v. 32, n.7, p.1717-1722, 2009. https://doi.org/10.1590/S0100-40422009000700007.

Nascimento, R.F. do; Lima, A.C.A. de; Vidal, C.B.; Melo, D. de Q.; Raulino, G.S.C. Adsorção: aspectos teóricos e aplicações ambientais. Fortaleza: Imprensa Universitária, 2014. 256p. http://www.repositorio.ufc.br/handle/riufc/10267. 08 Mar. 2019.

Ncibi, M.C.; Ranguin, R.; Pintor, M.J.; Jeanne-Rose, V.; Sillanpää, M.; Gaspard, M. Preparation and characterization of chemically activated carbons derived from Mediterranean Posidonia oceanica (L.) fibres. Journal of Analytical and Applied Pyrolysis, v.109, p.205-214, 2014. https://doi.org/10.1016/j.jaap.2014.06.010.

Nguyen, B.T.; Lehmann, J.; Hockaday, W.C.; Joseph, S.; Masiello, C.A. Temperature sensitivity of black carbon decomposition and oxidation. Environmental Science & Technology, v.44, n.9, p.3324-3331, 2019. https://doi.org/10.1021/es903016y.

Novotny, E.H.; Maia, C.M.B.F.; Carvalho, M.T.M.; Madari, B.E. Biochar: pyrogenic carbon for agricultural use - a critical review. Revista Brasileira de Ciência do Solo, v.39, n.2, p.321-344, 2015. https://doi.org/10.1590/01000683rbcs20140818.

Oliveira, L.P. Síntese e caracterização de carvão vegetal ativado por meio de oxidação com HNO3 e H2O2. Macaíba: Universidade Federal do Rio Grande do Norte, 2017. 41p. Undergraduate Thesis.

Pandiarajan, A.; Kamaraj, R.; Vasudevan, S.; Vasudevan, S. OPAC (orange peel activated carbon) derived from waste orange peel for the adsorption of chlorophenoxyacetic acid herbicides from water: Adsorption isotherm, kinetic modelling and thermodynamic studies. Bioresource Technology, v.261, p.329-341, 2018. https://doi.org/10.1016/j.biortech.2018.04.005.

Peng, X.; Ye, L.L.; Wang, C.H.; Zhou, H.; Sun, B. Temperature- and duration-dependent rice straw-derived biochar: characteristics and its effects on soil properties of an Ultisol in southern China. Soil and Tillage Research, v.112, n.2, p.159-166, 2011. https://doi.org/10.1016/j.still.2011.01.002.

Robati, D.; Mirza, B.; Rajabi, M.; Moradi, O.; Tyagi, I.; Agarwal, S.; Gupta, V.K. Removal of hazardous Dyes-BR 12 and methyl orange using graphene oxide as an adsorbent from aqueous phase. Chemical Engineering Journal, v.284, p.687-697, 2016. https://doi.org/10.1016/j.cej.2015.08.131.

Rodiguez, M.H.; Yperman, J.; Carleer, R.; Maggen, J.; Dadi, D.; Gryglewicz, G.; Van Der Bruggen, B.; Hernández, J.H.; Calvis, A.O. Adsorption of Ni(II) on spent coffee and coffee husk based activated carbon. Journal of Environmental Chemical Engineering, v.6, n.1, p.1161-1170, 2018. https://doi.org/10.1016/j.jece.2017.12.045.

Santos, A.; Simões, R.; Tavares, M. Variation of some wood macroscopic properties along the stem of Acacia melanoxylon R. Br. adult trees in Portugal. Forest Systems, v.22, n.3, p.463-470, 2013. https://doi.org/10.5424/fs/2013223-02421.

Silva, A.J.F.da; Moura, M.C. de P.A.; Santos, E. da S.; Pereira, J.E.S.; Barros Neto, E.L. de. Copper removal using carnauba straw powder: studies of equilibrium, kinetics and thermodynamics. Journal of Environmental Chemical Engineering, v.6, n.6, p.6828-6835, 2018. https://doi.org/10.1016/j.jece.2018.10.028.

Spessato, L.; Bedin, K.C.; Cazetta, A.L.; Souza, I.P.A.F.; Duarte, V.A.; Crespo, L.H.S.; Silva, M.C.; Pontes, R.M.; Almeida, V.C. KOH-Super activated carbon from biomass waste: insights into the paracetamol adsorption mechanism and thermal regeneration cycles. Journal of Hazardous Materials, v.371, p.499-505, 2019. https://doi.org/10.1016/j.jhazmat.2019.02.102.

Swiatkowski, A.; Pakula, M.; Biniak, S.; Walczyk, M. Influence of the surface chemistry of modified activated carbon on its electrochemical behaviour in the presence of lead(II) ions. Carbon, v.42, n.15, p.3057-3069, 2004. https://doi.org/10.1016/j.carbon.2004.06.043.

Tiryaki, B.; Yagmur, E.; Banford, A.; Aktas, Z. Comparison of activated carbon produced from natural biomass and equivalent chemical compositions. Journal of Analytical and Applied Pyrolysis, v.105, p.276–283, 2014. https://doi.org/10.1016/j.jaap.2013.11.014.

Trompowsky, P.M.; Benites, V. de M.; Madari, B.E.; Pimenta, A.S.; Hockaday, W.C.; Hatcher, P.G. Characterization of humic like substances obtained by chemical oxidation of eucalyptus charcoal. Organic Geochemistry, v.36, n.11, p.1480-1489, 2005. https://doi.org/10.1016/j.orggeochem.2005.08.001.

Turčániová, L.; Škvarla, J.; Baláž, P.A. Contribution to the mechanism of formation of humic acids in coal. Journal of Materials Synthesis and Processing. v.8, n.5 6, p.359–363, 2000. https://doi.org/10.1023/A:1011358831253.

Verheijen, F.; Jeffrey, S.; Bastos, A.C.; van der Velde, M.; Diafas, I. Biochar application to soils: a critical review of effects on soil properties, processes and functions. Ispra: European Commission, 2010. 149p. https://doi.org/10.2788/472.

Wang, B.; Lehmann, J.; Hanley, K. Hestrin, R.; Enders, A. Adsorption and desorption of ammonium by maple wood biochar as a function of oxidation and pH. Chemosphere, v.138, p.120-126, 2015. https://doi.org/10.1016/j.chemosphere.2015.05.062.

Wang, Y.; Liu, R. H2O2 treatment enhanced the heavy metals removal by manure biochar in aqueous solutions. Science of The Total Environment, v.628–629, p.1139-1148, 2018. https://doi.org/10.1016/j.scitotenv.2018.02.137.

Xu, Z.; Xu, X.; Tsang, D.C.W.; Cao, X. Contrasting impacts of pre- and post-application aging of biochar on the immobilization of Cd in contaminated soils. Environmental Pollution, v.242, Part B, p.1362-1370, 2018. https://doi.org/10.1016/j.envpol.2018.08.012.

Yang, J.; Yu, M.; Chen, W. Adsorption of hexavalent chromium from aqueous solution by activated carbon prepared from longan seed: kinetics, equilibrium and thermodynamics. Journal of Industrial and Engineering Chemistry, v.21, p.414–422, 2015. https://doi.org/10.1016/j.jiec.2014.02.054.

Yao, S.; Zhang, J.; Shen, D.; Xiao, R.; Gu, S.; Zhao, M.; Liang, J. Removal of Pb(II) from water by the activated carbon modified by nitric acid under microwave heating. Journal of Colloid and Interface Science, v.463, p.118-127, 2016. https://doi.org/10.1016/j.jcis.2015.10.047.

Zhang, K.; Sun, P.; Faye, M.C.A.S.; Zhang, Y. Characterization of biochar derived from rice husks and its potential in chlorobenzene degradation. Carbon, v.130, p.730-740, 2018. https://doi.org/10.1016/j.carbon.2018.01.036.

Zuo, X.; Liu, Z.; Chen, M. Effect of H2O2 concentrations on copper removal using the modified hydrothermal biochar. Bioresource Technology, v.207, p.262-267, 2016. https://doi.org/10.1016/j.biortech.2016.02.032.


Apontamentos

  • Não há apontamentos.


Direitos autorais 2020 Elias Costa de Souza, Alexandre Santos Pimenta, Renata Martins Braga, Tatiane Kelly Barbosa de Azevedo, Pedro Nicó de Medeiros Neto

SCImago Journal & Country Rank

Google Scholar

2020

h5 index: 11

h5 median: 12

Mais detalhes

Revista Brasileira de Ciências Agrárias (Agrária)

ISSN (ON LINE) 1981-0997

Pró-Reitoria de Pesquisa e Pós-Graduação

Universidade Federal Rural de Pernambuco

Rua Dom Manoel de Medeiros, s/n, Dois Irmãos Recife-Pernambuco-Brasil 52171-900

agrarias.prppg@ufrpe.br

secretaria@agraria.pro.br

 Licença Creative Commons
Todo o conteúdo da Agrária, exceto onde está identificado, está licenciado sob uma licença Creative Commons.