Produção de β-galactosidase por Saccharomyces fragilis IZ 275 em soro de queijo - DOI:10.5039/agraria.v15i1a7236

Alessandra Bosso, Adriana Aparecida Bosso Tomal, Lucas Caldeirão, Josemeyre Bonifácio Da Silva, Hélio Suguimoto, Raul Castro-Gomez

Resumo


O soro de queijo é um subproduto da indústria de laticínios rico em lactose, minerais e proteínas que pode ser usado   como meio de fermentação para microrganismos. Os parâmetros de fermentação (pH, temperatura e concentração de inóculo) ainda não foram otimizados. Assim, o objetivo deste estudo foi investigar os parâmetros de temperatura, pH e concentração de inóculo utilizando um Delineamento Composto Central Rotacional (DCCR) 23 e Metodologia de Superfície de Resposta (MSR) para produção de β-galactosidase em soro de queijo por Saccharomyces fragilis IZ 275. A produção de β-galactosidase por S. fragilis IZ 275 foi avaliada através da atividade enzimática (U mL-1) utilizando o substrato o-nitrofenil-β-D-galactopiranosídeo (ONPG). Todas as variáveis   estudadas foram significativas e, portanto, o modelo quadrático foi adequado para explicar os efeitos das três variáveis (X1, X2 e X3) na função resposta (Y1 = atividade da β-galactosidase). A utilização de 35 °C de temperatura, pH 6,0 e concentração de inóculo de 20% garante a máxima produção de β-galactosidase por Saccharomyces fragilis IZ 275 em soro de queijo.


Palavras-chave


inóculo; lactase; metodologia de superfície de resposta; temperatura; resíduo

Texto completo:

PDF (English)

Referências


Al-Jazairi, M.; Abou-Ghorra, S.; Bakri, Y.; Mustafa, M. Optimization of β-galactosidase production by response surface methodology using locally isolated Kluyveromyces marxianus. International Food Research Journal, v. 22, n. 4, p-1361-1367, 2015. http://www.ifrj.upm.edu.my/22%20(04)%202015/(7).pdf. 25 Aug. 2019.

Anisha, G.S. β-galactosidases. In: Pandey, A.; Negi, S.; Soccol, C.R. Current developments in biotechnology and bioengineering: production, isolation and purification of industrial products. London: Elsevier, 2017. Chap 17, p.395-421. https://doi.org/10.1016/B978-0-444-63662-1.00017-8.

Ballus, C.A.; Meinhart, A.D.; Bruns, R.E.; Godoy, H.T. Use of multivariate statistical techniques to optimize the simultaneous separation of 13 phenolic compounds from extra-virgin olive oil by capillary electrophoresis. Talanta, v. 83, n.4, p. 1181–1187, 2011. https://doi.org/10.1016/j.talanta.2010.07.013.

Bruns, R.E.; Scarminio, I.S.; Barros Neto, B. Statistical design-chemometrics. Amsterdam: Elsevier, 2006. 422p. (Data Handling in Science and Technology, 25).

Gupta, R. S. 2000. The natural evolutionary relationships among Prokaryotes. Critical Reviews in Microbiology, v. 26, n.2, p.111-131, 2000. https://doi.org/10.1080/10408410091154219.

Hussain, Q. Beta galactosidases and their potential applications: a review. Critical Review Biotechnology, v. 30, n.1, p.41–62, 2010. https://doi.org/10.3109/07388550903330497.

Kokkiligadda, A.; Beniwal, A.; Saini, P.; Vij, S. Utilization of cheese whey using synergistic immobilization of β-galactosidase and Saccharomyces cerevisiae cells in dual matrices. Applied Biochemical and Biotechnology, v. 179, n.8, p. 1469–1484, 2016. https://doi.org/10.1007/s12010-016-2078-8.

Kosseva, M.R.; Panesar, P.S.; Kaur, G.; Kennedy, J.F. Use of immobilised biocatalysts in the processing of cheese whey. International Journal of Biological Macromolecules, v. 45, n. 5, p. 437-447, 2009. https://doi.org/10.1016/j.ijbiomac.2009.09.005.

Lima, E.L.; Fernandes, J.; Cardarelli, H.R. Optimized fermentation of goat cheese whey with Lactococcus lactis for production of antilisterial bacteriocin-like substances. LWT - Food Science and Technology, v. 84, p. 710-716, 2017. https://doi.org/10.1016/j.lwt.2017.06.040.

Macwan, S.R.; Bhumika, K.D.; Parmar, S.C.; Aparnathi, K.D. Whey and its Utilization. International Journal of Current Microbiology and Applied Sciences, v. 5, n.8, p. 134-155, 2016. https://doi.org/10.20546/ijcmas.2016.508.016.

Makwana, S.; Hati, S.; Parmar, H.; Aparnathi, K.D. Process optimization for the production of β-galactosidase using potential Lactobacillus cultures. International Journal of Current Microbiology and Applied Sciences, v. 6, n. 8, p. 1454-1469, 2017. https://doi.org/10.20546/ijcmas.2017.608.176.

Meera, N.S.; Theja, P.C.; Devi, M.C. Production and optimization of β-galactosidase enzyme using probiotic Yeast Spp. Annals of Biological Research, v. 4, n.12, p. 62-67, 2013. https://www.scholarsresearchlibrary.com/abstract/production-and-optimization-of-bgalactosidase-enzyme-usingrnprobiotic-yeast-spp-11458.html. 02 Aug. 2019.

Mlichová, Z.; Rosenberg, M. Current trends of b-galactosidase application in food technology. Journal of Food and Nutrition Research, v. 45, n.2, p. 47-54, 2006. http://www.vup.sk/en/download.php%3FbulID%3D8. 02 Sep. 2019.

National Academy of Sciences. Food chemicals codex. 4.ed. Washington: National Academy Press, 1996. p.802–803.

Oak, S.J.; Jha, R. The effects of probiotics in lactose intolerance: A systematic review. Critical Reviews in Food Science and Nutrition, v. 59, n.11, p. 1-9, 2018. https://doi.org/10.1080/10408398.2018.1425977.

Oliveira, C.; Guimarães, P.M.R.; Domingues, L. Recombinant microbial systems for improved β-galactosidase production and biotechnological applications. Biotechnology Advances, v. 29, n.6, p. 600-609, 2011. https://doi.org/10.1016/j.biotechadv.2011.03.008.

Panesar, P.S. Application of response surface methodology for maximal lactose hydrolysis in whole milk using permeabilized yeast cells. Acta Alimentaria, v. 37, n.2, p. 191-203, 2008. https://doi.org/10.1556/AAlim.2007.0030.

Panesar, P.S.; Kumari, S.; Panesar, R. Potential applications of immobilized β-galactosidase in food processing industries. Enzyme Research, v.2101, article 473137, p. 1-16, 2010. https://doi.org/10.4061/2010/473137.

Panesar, P.S.; Panesar, R.; Singh, R.S.; Kennedy, J.F.; Kumar, H. Microbial production, immobilization and applications of β-D-galactosidase. Journal of Chemistry Technical Biotechnology, v. 81, n.4, p. 530-43, 2006. https://doi.org/10.1002/jctb.1453.

Perini, B.L.B.; Souza, H.C.M.; Kelbert, M.; Apati, G.P., Pezzin; A.P.T.; Schneider, A.L.S. Production of β-galactosidase from cheese whey using Kluyveromyces marxianus CBS 6556. Chemical Engineering Transactions, v. 32, p. 991- 996, 2013. https://www.aidic.it/cet/13/32/166.pdf. 25 Aug. 2019.

Prasad, L.N.; Ghosh, B.C.; Sherkat, F.; Shah, N.P. Extraction and characterisation of β-galactosidase produced by Bifidobacterium animalis spp. lactis Bb12 and Lactobacillus delbrueckii spp. bulgaricus ATCC 11842 grown in whey. International Food Research Journal, v. 20, n.1, p. 487-494, 2013. http://www.ifrj.upm.edu.my/20%20(01)%202013/66%20IFRJ%2020%20(01)%202013%20Shah%20(119).pdf. 03 Aug. 2019.

Prashar, A.; Jin, Y.; Mason, B.; Chae, M.; Bressler, D. C. Incorporation of whey permeate, a dairy effluent, in ethanol fermentation to provide a zero waste solution for the dairy industry. Journal of Dairy Science, v. 99, n.3, p-1859-1867, 2016. https://doi.org/10.3168/jds.2015-10059.

Rech, R.; Ayub, M.A.Z. Simplified feeding strategies for fed-batch cultivation of Kluyveromyces marxianus in cheese whey. Process Biochemistry, v. 42, p. 873-877, 2007. https://doi.org/10.14710/ijred.2.3.127-131.

Saqib, S.; Akram, A.; Halim, A.S.; Tassaduq, R. Sources of b-galactosidase and its applications in food industry. 3Biotech, v. 7, article 79, 2017. https://doi.org/10.1007/s13205-017-0645-5.

Silva, A.C.; Guimarães, P.M.R.; Teixeira, J.Á.; Domingues, L. Fermentation of desproteinized cheese whey powder solutions to ethanol by engineered Saccharomyces cerevisiae: effect of supplementation with corn steep liquor and repeated-batch operation with biomass recycling by flocculation. Journal of Industrial Microbiology & Biotechnology, v. 37, n.9, p. 973–982, 2010. https://doi.org/10.1007/s10295-010-0748-z.

Silveira, T.F.; Meinhart, A.D.; Souza, T.C.; Teixeira Filho, J.; Godoy, H.T. Phenolic compounds from yerba mate based beverages - a multivariate optimization. Food Chemistry, v. 190, p. 1159-1167, 2016. https://doi.org/10.1016/j.foodchem.2015.06.031.

Statsoft. Statistic (data analysis software system), version 7.0. Tulsa: Statsoft Inc, 2007.

Viana, C.S.; Pedrinho, D.R.; Morioka, L.R.I.; Suguimoto, H.H. Determination of cell permeabilization and beta-galactosidase extraction from Aspergillus oryzae CCT 0977 grown in whey cheese. International Journal of Chemical Engineering, v.2018, Article 1367434, 2018. https://doi.org/10.1155/2018/1367434.


Apontamentos

  • Não há apontamentos.


Direitos autorais 2020 Alessandra Bosso

SCImago Journal & Country Rank

Google Scholar

2019

h5 index: 10

h5 median: 14

Mais detalhes

Revista Brasileira de Ciências Agrárias (Agrária)

ISSN (ON LINE) 1981-0997

Pró-Reitoria de Pesquisa e Pós-Graduação

Universidade Federal Rural de Pernambuco

Rua Dom Manoel de Medeiros, s/n, Dois Irmãos Recife-Pernambuco-Brasil 52171-900

agrarias.prppg@ufrpe.br

secretaria@agraria.pro.br

 Licença Creative Commons
Todo o conteúdo da Agrária, exceto onde está identificado, está licenciado sob uma licença Creative Commons.