Remoção eficiente de compostos lipofílicos da madeira de eucalipto por adsorventes à base de lodo de esgoto - DOI:10.5039/agraria.v13i4a5590

Maria Naruna Felix Almeida, Tatiane Rodrigues Abreu, Michèle Oberson Souza, Gevany Paulino Pinho, Flaviano Oliveira Silvério

Resumo


O lodo de esgoto é um subproduto do tratamento de efluentes. Quando processado, este resíduo também pode ser usado como adsorvente. O objetivo deste trabalho foi produzir adsorventes a partir do lodo de esgoto, caracterizar sua estrutura e avaliar a eficiência na adsorção de compostos lipofílicos de madeira. O lodo de esgoto foi calcinado a sete temperaturas (400- 1000°C) por cinco horas. As propriedades de morfologia e textura dos materiais foram avaliadas por microscopia eletrônica de varredura e isotermas de nitrogênio. A presença de grupos funcionais químicos em sua superfície foi analisada por espectroscopia de infravermelho por transformada de Fourier. A taxa de adsorção do composto lipofílico foi avaliada por cromatografia gasosa -espectrometria de massa. Os resultados foram comparados com o talco, adsorvente tradicionalmente utilizado pela indústria. O aumento da temperatura contribuiu diretamente para a diminuição da área superficial específica. Os adsorventes obtidos entre 600 e 700°C removeram mais de 60% dos compostos lipofílicos da madeira, correspondendo a 94,1% da quantidade total de compostos. Esses valores são muito superiores aos apresentados pelo talco, sendo 2 e 11,8%, respectivamente. Portanto, os adsorventes produzidos podem ser estudados como um novo material na remoção de compostos de madeira lipofílicos.

Palavras-chave


adsorção; depósito; extrativos; pitch; papel e celulose

Texto completo:

PDF (English)

Referências


Abdel-Aziz, M. H.; Bassyouni, M.; Soliman, M. F.; Gutub, S. A.; Magram, S. F. Removal of heavy metals from wastewater using thermally treated sewage sludge adsorbent without chemical activation. Journal of Materials and Environmental Sciences, v. 8, n. 5, p. 1737–1747, 2017. https://www.jmaterenvironsci.com/Document/vol8/vol8_N5/185-JMES-2927-Abdel-Aziz.pdf. 03 Jul. 2018.

Aliakbari, Z.; Younesi, H.; Ghoreyshi, A. A.; Bahramifar, N.; Heidari, A. Production and Characterization of Sewage-Sludge Based Activated Carbons Under Different Post-Activation Conditions. Waste and Biomass Valorization, v. 9, n. 3, p. 451–463, 2018. https://doi.org/10.1007/s12649-016-9823-7.

Andreoli, C. V. (Coord.). Resíduos sólidos do saneamento: processamento, reciclagem e disposição final. Rio de Janeiro: RiMa/ABES, 2001. 282p.

Barbosa, L.; Maltha, C.; Cruz, M. Composição química de extrativos lipofílicos e polares de madeira de Eucalyptus grandis. Ciencia & Engenharia, v. 14, n. 2, p. 13–19, 2005. http://www.seer.ufu.br/index.php/cieng/article/view/540/2684. 22 Jun. 2018.

Chen, X.; Jeyaseelan, S.; Graham, N. Physical and chemical properties study of the activated carbon made from sewage sludge. Waste Management, v. 22, n. 2, p. 755–760, 2002. https://doi.org/10.1016/S0956-053X(02)00057-0.

Fan, S.; Wang, Y.; Wang, Z.; Tang, J.; Tang, J.; Li, X. Removal of methylene blue from aqueous solution by sewage sludge-derived biochar: Adsorption kinetics, equilibrium, thermodynamics and mechanism. Journal of Environmental Chemical Engineering, v. 5, n. 1, p. 601–611, 2017. https://doi.org/10.1016/j.jece.2016.12.019.

Fang, P.; Cen, C.; Chen, D.; Tang, Z. Carbonaceous adsorbents prepared from sewage sludge and its application for Hg0 adsorption in simulated flue gas. Chinese Journal of Chemical Engineering, v. 18, n. 2, p. 231–238, 2010. https://doi.org/10.1016/S1004-9541(08)60347-X.

Fernandez, M. P.; Watson, P. A.; Breuil, C. Gas chromatography – mass spectrometry method for the simultaneous determination of wood extractive compounds in quaking aspen. Journal of Chromatography A, v. 922, n. 1-2, p. 225–233, 2001. https://doi.org/10.1016/S0021-9673(01)00948-7.

Fonts, I.; Gea, G.; Azuara, M.; Ábrego, J.; Arauzo, J. Sewage sludge pyrolysis for liquid production: A review. Renewable and Sustainable Energy Reviews, v. 16, n. 5, p. 2781–2805, 2012. https://doi.org/10.1016/j.rser.2012.02.070.

Gao, Y.; Qin, M.; Li, C.; Yu, H.; Zhang, F. Control of sticky contaminants with cationic talc in deinked pulp. BioResources, v. 6, n. 2, p. 1916–1925, 2011. http://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_06_2_1916_Gao_QLYZ_Control_Sticky_Contam_Cat_Talc/971. 29 Jun. 2018.

Gómez-Pacheco, C. V.; Rivera-Utrilla, J.; Sánchez-Polo, M.; López-Peñalver, J. J. Optimization of the preparation process of biological sludge adsorbents for application in water treatment. Journal of Hazardous Materials, v. 217–218, p. 76–84, 2012. https://doi.org/10.1016/j.jhazmat.2012.02.067.

He, X.; Zhang, Y.; Shen, M.; Tian, Y.; Zheng, K.; Zeng, G. Vermicompost as a natural adsorbent: evaluation of simultaneous metals (Pb, Cd) and tetracycline adsorption by sewage sludge-derived vermicompost. Environmental Science and Pollution Research, v. 24, n. 9, p. 8375–8384, 2017. https://doi.org/10.1007/s11356-017-8529-0.

He, Y.; Liao, X.; Liao, L.; Shu, W. Low-cost adsorbent prepared from sewage sludge and corn stalk for the removal of COD in leachate. Environmental Science and Pollution Research, v. 21, n. 13, p. 8157–8166, 2014. https://doi.org/10.1016/j.rser.2012.02.070.

Hubbe, M.; Rojas, O.; Venditti, R. Control of tacky deposits on paper machines–A Review. Nordic Pulp and Paper Research Journal, v. 21, n. 2, p. 154–171, 2006. https://doi.org/10.3183/NPPRJ-2006-21-02-p154-171.

Khandaker, S.; Toyohara, Y.; Kamida, S.; Kuba, T. Effective removal of cesium from wastewater solutions using an innovative low-cost adsorbent developed from sewage sludge molten slag. Journal of Environmental Management, v. 222, p. 304–315, 2018. https://doi.org/10.1016/j.jenvman.2018.05.059.

Kong, L.; Xiong, Y.; Tian, S.; et al. Preparation and characterization of a hierarchical porous char from sewage sludge with superior adsorption capacity for toluene by a new two-step pore-fabricating process. Bioresource Technology, v. 146, p. 457–462, 2013. https://doi.org/10.1016/j.biortech.2013.07.116.

Kurniawan, T. A.; Chan, G. Y. S.; Lo, W. Hung; Babel, S. Comparisons of low-cost adsorbents for treating wastewaters laden with heavy metals. Science of the Total Environment, v. 366, n. 2–3, p. 409–426, 2006. https://doi.org/10.1016/j.scitotenv.2005.10.001.

Li, J.; Xing, X.; Li, J.; Shi, M.; Lin, A.; Xu, C.; Zheng, J.; Li, R. Preparation of thiol-functionalized activated carbon from sewage sludge with coal blending for heavy metal removal from contaminated water. Environmental Pollution, v. 234, p. 677–683, 2018. https://doi.org/10.1016/j.envpol.2017.11.102.

Mahapatra, K.; Ramteke, D. S.; Paliwal, L. J. Production of activated carbon from sludge of food processing industry under controlled pyrolysis and its application for methylene blue removal. Journal of Analytical and Applied Pyrolysis, v. 95, p. 79–86, 2012. http://dx.doi.org/10.1016/j.jaap.2012.01.009.

Martin, M. J.; Serra, E.; Ros, A.; Balaguer, M. D.; Rigola, M. Carbonaceous adsorbents from sewage sludge and their application in a combined activated sludge-powdered activated carbon (AS-PAC) treatment. Carbon, v. 42, n. 7, p. 1383–1388, 2004. https://doi.org/10.1016/j.carbon.2004.01.011.

Nguyen, N.; Lee, S.; Chen, S.; Nguyen, N.; Chang, C.; Hsiao, S.; Trang, L.; Dao, C.; Lin, M.; Wang, L. Preparation of Zn-doped biochar from sewage sludge for chromium ion removal. Journal of Nanocience and Nanotechnology, v. 18, n. 8, p. 5520-5527, 2018. https://doi.org/10.1166/jnn.2018.15392.

Ocampo-Pérez, R.; Rivera-Utrilla, J.; Gómez-Pacheco, C.; Sánchez-Polo, M.; López-Peñalver, J. J. Kinetic study of tetracycline adsorption on sludge-derived adsorbents in aqueous phase. Chemical Engineering Journal, v. 213, p. 88–96, 2012. https://doi.org/10.1016/j.cej.2012.09.072.

Pan, Z. Hui; Tian, J. Yu; Xu, G. Ren; Li, J. Jing; Li, G. Bai. Characteristics of adsorbents made from biological, chemical and hybrid sludges and their effect on organics removal in wastewater treatment. Water Research, v. 45, n. 2, p. 819–827, 2011. https://doi.org/10.1016/j.watres.2010.09.008.

Rafatullah, M.; Sulaiman, O.; Hashim, R.; Ahmad, A. Adsorption of methylene blue on low-cost adsorbents: A review. Journal of Hazardous Materials, v. 177, n. 1–3, p. 70–80, 2010. https://doi.org/10.1016/j.jhazmat.2009.12.047.

Rencoret, J.; Gutiérrez, A.; Río, J. C.; Rencoret, J.; Gutie, A. Lipid and lignin composition of woods from different eucalypt species. Holzforschung, v. 61, n. 2, p. 165–174, 2007. https://doi.org/10.1515/HF.2007.030.

Rio, J.; Romero, J.; Gutiérrez, A. Analysis of pitch deposits produced in Kraft pulp mills using a totally chlorine free bleaching sequence. Journal of chromatography A, v. 874, n. 2, p. 235–245, 2000. https://doi.org/10.1016/S0021-9673(00)00111-4.

Rivera-Utrilla, J.; Gómez-Pacheco, C. V; Sánchez-Polo, M.; López-Peñalver, J. J.; Ocampo-Pérez, R. Tetracycline removal from water by adsorption/bioadsorption on activated carbons and sludge-derived adsorbents. Journal of Environmental Management, v. 131, p. 16–24, 2013. https://doi.org/10.1016/j.jenvman.2013.09.024.

Rozada, F.; Otero, M.; Parra, J. B.; Morán, A.; García, A. I. Producing adsorbents from sewage sludge and discarded tyres: Characterization and utilization for the removal of pollutants from water. Chemical Engineering Journal, v. 114, n. 1–3, p. 161–169, 2005. https://doi.org/10.1016/j.cej.2005.08.019.

Silvério, F.; L. Barbosa, C. Maltha, A. Silvestre, D. Pilo-Veloso, J. G. Characterization of lipophilic wood extractives from clones of Eucalyptus urograndis cultivate in Brazil. BioResources, v. 2, n. 2, p. 157–168, 2007. http://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_02_2_157_168_Silverio_BMSPG_EucalyptusExtractives_Clones/137. 03 Jul. 2018.

Sing, K. S. W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and Applied Chemistry, v. 57, n. 4, p. 603–619, 1985. https://doi.org/10.1351/pac198557040603.

Singh, R. P.; Agrawal, M. Potential benefits and risks of land application of sewage sludge. Waste Management, v. 28, n. 2, p. 347–358, 2008. https://doi.org/10.1016/j.wasman.2006.12.010.

Smith, K. M.; Fowler, G. D.; Pullket, S.; Graham, N. J. D. Sewage sludge-based adsorbents: A review of their production, properties and use in water treatment applications. Water Research, v. 43, n. 10, p. 2569–2594, 2009. https://doi.org/10.1016/j.watres.2009.02.038.

Stack, K.; Lee, R.; Richardson, D.; Lewis, T.; Garnier, G. Complex formation and stability of colloidal wood resin pitch suspensions with hemicellulose polymers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, v. 441, p. 101–108, 2014. https://doi.org/10.1016/j.colsurfa.2013.08.057.

Tang, L.; Yu, J.; Pang, Y.; Zeng, G.; Deng, Y.; Wang, J.; Ren, X.; Ye, S.; Peng, B.; Feng, H. Sustainable efficient adsorbent: Alkali-acid modified magnetic biochar derived from sewage sludge for aqueous organic contaminant removal. Chemical Engineering Journal, v. 336, p. 160–169, 2018. https://doi.org/10.1016/j.cej.2017.11.048.

Tang, Y.; Chan, S. W.; Shih, K. Copper stabilization in beneficial use of waterworks sludge and copper-laden electroplating sludge for ceramic materials. Waste Management, v. 34, n. 6, p. 1085–1091, 2014. https://doi.org/10.1016/j.wasman.2013.07.001.

Velghe, I.; Carleer, R.; Yperman, J.; Schreurs, S.; D’haen, J. Characterisation of adsorbents prepared by pyrolysis of sludge and sludge/disposal filter cake mix. Water Research, v. 46, n. 8, p. 2783–2794, 2012. https://doi.org/10.1016/j.watres.2012.02.034.

Xiao, B.; Dai, Q.; Yu, X.; Zhai, S.; Liu, R.; Guo, X.; Liu, J.; Chen, H. Effects of sludge thermal-alkaline pretreatment on cationic red X-GRL adsorption onto pyrolysis biochar of sewage sludge. Journal of Hazardous Materials, v. 343, p. 347–355, 2018. https://doi.org/10.1016/j.jhazmat.2017.10.001.

Xie, R.; Jiang, W.; Wang, L.; Peng, J.; Chen, Y. Effect of pyrolusite loading on sewage sludge-based activated carbon in Cu(II), Pb(II), and Cd(II) adsorption. Environmental Progress & Sustainable Energy, v. 32, n. 4, p. 1066–1073, 2013. https://doi.org/10.1002/ep.11710.

Xu, G.; Yang, X.; Spinosa, L. Development of sludge-based adsorbents: Preparation, characterization, utilization and its feasibility assessment. Journal of Environmental Management, v. 151, p. 221–232, 2015. https://doi.org/10.1016/j.jenvman.2014.08.001.

Yu, L.; Zhong, Q. Preparation of adsorbents made from sewage sludges for adsorption of organic materials from wastewater. Journal of Hazardous Materials, v. 137, n. 1, p. 359–366, 2006. https://doi.org/10.1016/j.jhazmat.2006.02.007.

Zaini, M. A. A.; Zakaria, M.; Mohd-Setapar, S. H.; Che-Yunus, M. A. Sludge-adsorbents from palm oil mill effluent for methylene blue removal. Journal of Environmental Chemical Engineering, v. 1, n. 4, p. 1091–1098, 2013. https://doi.org/10.1016/j.jece.2013.08.026.

Zhang, J.; Tian, Y.; Yin, L.; Zhang, J.; Drewes, J. E. Insight into the effects of biochar as adsorbent and microwave receptor from one-step microwave pyrolysis of sewage sludge. Environmental Science and Pollution Research, v. 25, n. 19, p. 18424–18433, 2018. https://doi.org/10.1007/s11356-018-2028-9.


Apontamentos

  • Não há apontamentos.


Direitos autorais 2018 Maria Naruna Felix Almeida, Tatiane Rodrigues Abreu, Michèle Oberson Souza, Gevany Paulino Pinho, Flaviano Oliveira Silvério

SCImago Journal & Country Rank

Google Scholar

2018

h5 index: 12

h5 median: 14

Mais detalhes

Revista Brasileira de Ciências Agrárias (Agrária)

ISSN (ON LINE) 1981-0997

Pró-Reitoria de Pesquisa e Pós-Graduação

Universidade Federal Rural de Pernambuco

Rua Dom Manoel de Medeiros, s/n, Dois Irmãos Recife-Pernambuco-Brasil 52171-900

agrarias.prppg@ufrpe.br

secretaria@agraria.pro.br

 Licença Creative Commons
Todo o conteúdo da Agrária, exceto onde está identificado, está licenciado sob uma licença Creative Commons.