Efecto de extractos de Annonaceae y Amaryllidaceae para el control del piojito negro de la cebolla, Thrips tabaci Lindeman (Thysanoptera:Thripidae) - DOI:10.5039/agraria.v15i2a6933
Resumo
Palavras-chave
Texto completo:
PDF (English)Referências
Arevalo, A.; Bacca, T.; Soto G, A. Diagnóstico del uso y manejo de plaguicidas en fincas productoras de cebolla junca Allium fistulosum en el municipio de Pasto. Luna Azul, n.38, p.132–145, 2014. http://www.scielo.org.co/scielo.php?pid=S1909-24742014000100008&script=sci_arttext&tlng=en. 01 Apr. 2019.
Azazy, A. M.; Abdelall, M. F. M.; El-Sappagh, I. A.; Khalil, A. E. H. Biological control of the onion thrips, Thrips tabaci Lindeman (Thysanoptera: Thripidae), in open fields using Egyptian entomopathogenic nematode isolates. Egyptian Journal of Biological Pest Control, v.28, n.1, article 27, 2018. https://doi.org/10.1186/s41938-017-0025-9.
Benkeblia, N. Antimicrobial activity of essential oil extracts of various onions (Allium cepa) and garlic (Allium sativum). LWT - Food Science and Technology, v.37, n.2, p. 263–268, 2004. https://doi.org/10.1016/j.lwt.2003.09.001.
Calderón-Oliver, M.; Escalona-Buendía, H. B.; Medina-Campos, O. N.; Pedraza-Chaverri, J.; Pedroza-Islas, R.; Ponce-Alquicira, E. Optimization of the antioxidant and antimicrobial response of the combined effect of nisin and avocado by products. LWT - Food Science and Technology, v 65, p. 46–52, 2016. https://doi.org/10.1016/j.lwt.2015.07.048.
Castro, L.; Alzate, M.; Guerrero, G. Estudio preliminar de la bioactividad de extractos de semillas de Annona cherimolia de la familia Annonaceae. Scientia et Technica, v.1, n. 44, p. 326–330, 2010. https://dialnet.unirioja.es/servlet/articulo?codigo=4584726. 09 Apr. 2019.
Celestino, F. N.; Pratissoli, D.; Machado, L. C.; Santos Junior, H. J. G.; Queiroz, V. T.; Mardgan, L. Control of coffee berry borer, Hypothenemus hampei (Ferrari) (Coleoptera: Curculionidae: Scolytinae) with botanical insecticides and mineral oils. Acta Scientiarum. Agronomy, v. 38, n.1, e27430, 2016. https://doi.org/10.4025/actasciagron.v38i1.27430.
Celis, Á.; Mendoza, C.; Pachón, M.; Cardona, J.; Delgado, W.; Cuca, L. E. Extractos vegetales utilizados como biocontroladores con énfasis en la familia Piperaceae. Una revisión. Agronomía Colombiana, v. 26, n. 1, p. 97–106, 2008. http://www.scielo.org.co/pdf/agc/v26n1/v26n1a12.pdf. 29 Mar. 2019.
Chang, T.; Jang, H.; Lin, W.; Duan, P. Antioxidant and antimicrobial activities of commercial rice wine extracts of Taiwanese Allium fistulosum. Food Chemistry, v. 190, p. 724–729, 2016. https://doi.org/10.1016/j.foodchem.2015.06.019.
Chaubey, M. K. Study of insecticidal properties of garlic, Allium sativum (Alliaceae) and bel, Aegle marmelos (Rutaceae) essential oils against Sitophilus zeamais L. (Coleoptera: curculionidae). Journal of Entomology, v. 14, n. 5, p. 191–198, 2017. https://doi.org/10.3923/je.2017.191.198.
Colom, O. A.; Neske, A.; Popich, S.; Bardón, A. Toxic effects of Annonaceous acetogenins from Annona cherimolia (Magnoliales: Annonaceae) on Spodoptera frugiperda (Lepidoptera: Noctuidae). Journal of Pest Science, v. 80, n. 1, p. 63–67, 2007. https://doi.org/http://dx.doi.org/10.1007/s10340-006- 0149-2.
Denloye, A. A. Bioactivity of powder and extracts from garlic, Allium sativum L. (Alliaceae) and spring onion, Allium fistulosum L. ( Alliaceae ) against Callosobruchus maculatus F. (Coleoptera: Bruchidae) on cowpea, Vigna unguiculata (L.) Walp (Leguminosae) seeds. Psyche, v. 2010, Article ID 958348, 2010. https://doi.org/10.1155/2010/958348.
Dos Santos, L.; Trindade, R.P.; Dos Santos, D. S.; Dos Santos, M.; Broglio, S. M.F.; Lemos, E. E. P. Effect of anonaceous extracts on Aphis gossypii (Glover, 1887) (Hemiptera: Aphididae) and selectivity to Eriopis connexa (Germar, 1824) (Coleoptera: Coccinellidae). Acta Scientiarum. Agronomy, v. 40, n. 1, e36267, 2018. https://doi.org/10.4025/actasciagron.v40i1.36267.
Egydio-Brandão, A. P. M.; Novaes, P.; Santos, D. Y. A. C. Alkaloids from Annona Review from 2005 to 2016. JSM Biochemistry & Molecular Biology, v. 4, n. 3, p. 1–12. 2017. https://www.jscimedcentral.com/Biochemistry/biochemistry-4-1031.pdf. 05 Apr. 2019.
Garrido, G.; Ortiz, M.; Pozo, P. Fenoles y flavonoides totales y actividad antioxidante de extractos de hojas de Lampaya medicinalis F. Phil. Journal of Pharmacy and Pharmacognosy Research, v. 1, n. 1, p. 30–38, 2013. http://jppres.com/jppres/pdf/vol1/1_1_30.pdf. 01 Apr. 2019.
Giraldo, A.; Guerrero, G. Rollinia mucosa (Jacq.) Baillon (Annonaceae) active metabolites as alternative biocontrol agents against the lace bug Corythucha gossypii (Fabricius): an insect pest. Universitas Scientiarum, v. 23, n. 1, p. 21–34, 2018. https://doi.org/10.11144/Javeriana.SC23-1.rmjb.
Gîtin, L.; Dinicə, R.; Neagu, C.; Dumitrascu, L. Sulfur compounds identification and quantification from Allium spp. fresh leaves. Journal of Food and Drug Analysis, v. 22, n. 4, p. 425–430, 2014. https://doi.org/10.1016/j.jfda.2014.04.002.
Grzybowski, A.; Tiboni, M.; da Silva, M. A. N.; Chitolina, R. F.; Passos, M.; Fontana, J. D. The combined action of phytolarvicides for the control of dengue fever vector, Aedes aegypti. Brazilian Journal of Pharmacognosy, v. 22, n. 3, p. 549–557, 2012. https://doi.org/10.1590/S0102-695X2012005000026.
Guzmán, S.; Palacios, M. Instrumentos de política para la gestión de Servicios ecosistémicos en agro-ecosistemas cebolleros de la cuenca del río Otún, Colombia. Recursos Naturales y Ambiente, v. 58, p. 51–58, 2018. http://repositorio.bibliotecaorton.catie.ac.cr/bitstream/handle/11554/6418/Instrumentos_depolitica_pdf.pdf?sequence=1&isAllowed=y. 05 Apr. 2019.
Kameoka, H.; Iida, H.; Hashimoto, S.; Miyazawa, M. Sulphides and furanones from steam volatile oils of Allium fistulosum and Allium chinense. Phytochemistry, v. 23, n. 1, p. 155–158, 1984. https://doi.org/10.1016/0031-9422(84)83097-6.
Khaliq, A.; Khan, A. A.; Afzal, M.; Tahir, H. M.; Raza, A. M.; Khan, A. M. Field Evaluation of selected botanicals and commercial synthetic insecticides against Thrips tabaci Lindeman (Thysanoptera: Thripidae) populations and predators in onion field plots. Crop Protection, v. 62, p.10–15, 2014. https://doi.org/10.1016/j.cropro.2014.03.019.
Lanzotti, V. The analysis of onion and garlic. Journal of Chromatography A, v. 1112, n. 2, p. 3–22, 2006. https://doi.org/10.1016/j.chroma.2005.12.016.
Lebedev, G.; Abo-Moch, F.; Gafni, G.; Ben-Yakir, D.; Ghanim, M. High-level of resistance to spinosad, emamectin benzoate and carbosulfan in populations of Thrips tabaci collected in Israel. Pest Management Science, v. 69, n. 2, p. 274–277, 2013. https://doi.org/10.1002/ps.3385.
Leite, G. L. D.; Silva, F. W. S.; Guanabens, R. E. M.; Fernandes, L. A.; Figueiredo, L. S.; Silva, L. F. NPK and flavonoids affecting insect populations in Dimorphandra mollis seedlings. Acta Scientiarum. Agronomy, v. 34, n. 1, p. 17–22, 2012. https://doi.org/10.4025/actasciagron.v34i1.11233.
Llana-Ruiz-Cabello, M.; Maisanaba, S.; Gutiérrez-praena, D.; Prieto, A. I.; Pichardo, S.; Jos, Á.; Moreno, F. J.; Cameán, A. M. Cytotoxic and mutagenic in vitro assessment of two organosulfur compounds derived from onion to be used in the food industry. Food Chemistry, v. 166, p. 423–431, 2015. https://doi.org/10.1016/j.foodchem.2014.06.058.
Martin, N. A.; Workman, P. J.; Butler, R. C. Insecticide resistance in onion thrips (Thrips tabaci) (Thysanoptera : Thripidae). New Zealand Journal of Crop and Horticultural Science, v. 31, n. 2, p. 99–106, 2003. https://doi.org/10.1080/01140671.2003.9514242.
McLaughlin, J. L. Paw paw and cancer: Annonaceous acetogenins from discovery to commercial products. Journal of Natural Products, v. 71, n. 7, p. 1311–1321, 2008. https://doi.org/10.1021/np800191t.
Moghadamtousi, S.; Fadaeinasab, M.; Nikzad, S.; Mohan, G.; Ali, H. M.; Kadir, H. A. Annona muricata (Annonaceae): a review of its traditional uses, isolated acetogenins and biological activities. International Journal of Molecular Sciences, v. 16, n. 7, p. 15625-15658, 2015. https://doi.org/10.3390/ijms160715625.
Murillo, J. Las Annonaceae de Colombia. Biota Colombiana, v. 2, n. 1, p. 49-58, 2001. http://www.redalyc.org/pdf/491/49120104.pdf. 29 Mar. 2019.
Nazemi, A.; Khajehali, J.; Van Leeuwen, T. Incidence and characterization of resistance to pyrethroid and organophosphorus insecticides in Thrips tabaci (Thysanoptera: Thripidae) in onion fields in Isfahan, Iran. Pesticide Biochemistry and Physiology, v. 129, p. 28–35, 2016. https://doi.org/10.1016/j.pestbp.2015.10.013.
Nwankwo, E. N.; Okonkwo, N. J.; Ogbonna, C. U.; Akpom, C. J. O.; Chukwudi, M. Moringa oleifera and Annona muricata seed oil extracts as biopesticides against the second and fourth larval instar of Aedes aegypti L. (Diptera: Culicidae). Journal Biopest, v. 8, n. 1, p. 56–61, 2015. http://www.jbiopest.com/users/LW8/efiles/vol_8_1_56-61.pdf. 01 Apr. 2019.
Ortiz, R.; Gonzáles, C.; Castaño, J. Etiología de la punta blanca de la cebolla (Allium fistulosum L.) en la granja tesorito, Manizales - Caldas. Revista de La Academia Colombiana de Ciencias Exactas, Fisicas y Naturales, v. 36, n. 140, p. 365–372. 2012. https://www.researchgate.net/publication/262504462. 10 Apr. 2019.
Patil, V.V.; Kabre, G.B.; Dixit, S.S.; Desale, S.B. Evaluation of entomophathogenic fungi against onion thrips, Thrips tabaci (Lindeman). International Journal of Plant Protection, v. 9, n. 1, p. 168–171, 2016. https://doi.org/10.15740/HAS/IJPP/9.1/168-171.
Pereira, J. A.; Pereira, A. P.; Ferreira, I. C.; Valentão, P.; Andrade, P. B.; Seabra, R.; Estevinho, L.; Bento, A. Table olives from Portugal: phenolic compounds, antioxidant potential, and antimicrobial activity. Journal of Agricultural and Food Chemistry, v. 54, n. 22, p. 8425–8431, 2006. https://doi.org/10.1021/jf061769j.
Pino, O.; Sánchez, Y.; Rojas, M. M. Plante metabolitos secundarios como alternativas en el manejo de plagas. II: una visión general de su potencial en Cuba. Revista de Protección Vegetal, v. 28, n. 2, p. 95–108, 2013. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1010-27522013000200002. 29 Mar. 2019.
Plata-Rueda, A.; Martínez, L. C.; Santos, M. H.D.; Fernandes, F. L.; Wilcken, C. F.; Soares, M. A.; Serrao. J.E.; Zanuncio, J. C. Insecticidal activity of garlic essential oil and their constituents against the mealworm beetle, Tenebrio molitor Linnaeus (Coleoptera: Tenebrionidae). Scientific Reports, v. 7, article 46406, 2017. https://doi.org/10.1038/srep46406.
Pyun, M.; Shin, S. Ã. Antifungal effects of the volatile oils from Allium plants against Trichophyton species and synergism of the oils with ketoconazole. Phytomedicine, v. 13, n. 6, p. 394–400, 2006. https://doi.org/10.1016/j.phymed.2005.03.011.
RAPAL Uruguay. Contaminación y eutrofización del agua Impactos del modelo de agricultura industrial. Montevideo: RAPAL Uruguay, 2010. 36p. http://www.rapaluruguay.org/agrotoxicos/Uruguay/Eutrofizacion.pdf. 10 Mar. 2019. Rattan, R. S. Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Protection, v. 29, n. 9, p. 913–920, 2010. https://doi.org10.1016/j.cropro.2010.05.008.
Roldán, E.; Sánchez-Moreno, C.; Ancos, B. D. E. Subproductos de cebolla como ingredientes alimentarios con propiedades antioxidantes e inhibidoras del pardeamiento enzimático. In: Congreso Iberoamericano de Tecnologia Postcosecha y Agroexportaciones, 5., 2007, Cartagena. Anales… Curico: Universidad Católica del Maule; Cartagena: Universidad Politécnica de Cartagena, 2007. v. 1, p. 559–570.
Sang, S.; Lao, A.; Wang, Y.; Chin, C.K.; Rosen, R. T.; Ho, C.T. Antifungal constituents from the seeds of Allium fistulosum L. Journal of Agricultural and Food Chemistry, v. 50, n. 22, p. 6318–6321, 2002. https://doi.org/10.1021/jf025651o.
Satyanarayana, P.; Singh, P. Relative field efficacy of botanicals, bio-pesticides and synthetic insecticides against thrips (Thrips tabaci Lind) on onion. Journal of Experimental Zoology, v. 19, n. 1, p. 191–194, 2016. http://www.connectjournals.com/achivestoc2.php?fulltext=2430801H_191-194.pdf&&bookmark=CJ-033215&&issue_id=01&&yaer=2016. 07 Apr. 2019.
Soto, V. C.; Maldonado, I. B.; Jofré, V. P.; Galmarini, C. R.; Silva, M. F. Direct analysis of nectar and floral volatile organic compounds in hybrid onions by HS-SPME/GC-MS: Relationship with pollination and seed production. Microchemical Journal, v. 122, p. 110–118, 2015. https://doi.org/10.1016/j.microc.2015.04.017.
Souza, C. M.; Baldin, E. L. L.; Ribeiro, L. P.; Silva, I. F.; Morando, R.; Bicalho, K. U.; Vendramim, J.D.; Fernandes, J. B. Lethal and growth inhibitory activities of Neotropical Annonaceae-derived extracts, commercial formulation, and an isolated acetogenin against Helicoverpa armigera. Journal of Pest Science, v. 90, n. 2, p. 701–709, 2017. https://doi.org/10.1007/s10340-016-0817-9.
Tada, M.; Hiroe, Y.; Kiyohara, S.; Suzuki, S. Nematicidal and antimicrobial constituents from Allium grayi Regel and Allium fistolosum L. var. caespitosum. Agricultura and Biological Chemestry, v. 52, n. 9, p. 2383–2385, 1988. https://doi.org/10.1080/00021369.1988.10869050.
Walsh, S. E.; Maillard, J. Y.; Russel, A. D.; Catrenich, C. E.; Charbonneau, A. L.; Bartolo, R. G. activity and mechanism of action of selected biocidal agents on gram -positive and -negative bacteria. Journal of Applied Microbiology, v. 94, n.2, p. 240–247, 2003. https://doi.org/10.1046/j.1365-2672.2003.01825.x.
Zamar, M. I.; Arce de Hamity, M. G.; Andrade, A.; Amendola de Olsen, A.; Hamity, V. Efecto de productos no convencionales para el control de Thrips tabaci (Thysanoptera: Thripidae) en el cultivo de Ajo (Allium sativum) en la Quebrada de Humahuaca (Jujuy-Argentina). Idesia, v. 25, n. 3, p. 41–46, 2007. https://doi.org/10.4067/S0718-34292007000300005.
Apontamentos
- Não há apontamentos.
Direitos autorais 2020 Ana Isabel Giraldo Rivera, Gloria Edith Guerrero Alvarez, Juan Pablo Arrubla, Luz Marina Baena, Diego Paredes Cuerco
Google Scholar
2020
h5 index: 11
h5 median: 12
Revista Brasileira de Ciências Agrárias (Agrária)
ISSN (ON LINE) 1981-0997
Pró-Reitoria de Pesquisa e Pós-Graduação
Universidade Federal Rural de Pernambuco
Rua Dom Manoel de Medeiros, s/n, Dois Irmãos Recife-Pernambuco-Brasil 52171-900
Todo o conteúdo da Agrária, exceto onde está identificado, está licenciado sob uma licença Creative Commons.