Efecto de extractos de Annonaceae y Amaryllidaceae para el control del piojito negro de la cebolla, Thrips tabaci Lindeman (Thysanoptera:Thripidae) - DOI:10.5039/agraria.v15i2a6933

Ana Isabel Giraldo Rivera, Gloria Edith Guerrero Alvarez, Juan Pablo Arrubla, Luz Marina Baena, Diego Paredes Cuerco, Melissa Andrea Gomez Benitez

Resumo


El objetivo de este estudio fue evaluar el efecto de los extractos de Annona muricata, y de Allium fistulosum L. para el control del Thrips tabaci L., e identificar los principales metabolitos secundarios a los que se les atribuye la actividad. Se obtuvo un extracto polar a partir de la semilla de Annona muricata y dos extractos de las hojas de Allium fistulosum L. Se implementó un modelo in vitro para la evaluación insecticida frente a Thrips tabaci L. Se evaluó el efecto de los extractos de manera individual y posteriormente en mezclas determinando la concentración letal media. Según los resultados el extracto de A. muricata L. presentó un CL50 = 82.93 mg L-1, el aceite esencial de CL50 = 335.29 mg L-1 y el hidrolato de CL50 = 2348.84 mg L-1. Las combinaciones de los extractos alcanzaron tasas de mortalidad entre el 50% y 72.62 %, resultados promisorios como alternativa para el manejo integral de esta plaga. El análisis por Cromatografía liquidad de Alta Eficiencia (HPLC) del extracto de Annonaceae indicó la presencia de Acetogeninas y Alcaloides, y el análisis por Cromatografía de gases acoplado a espectrometría de masas (GC-MS) de los extractos de Allium fistulosum L. evidenció la presencia de compuestos volátiles sulfurados. Adicionalmente, se determinó en el Aceite esencial y en el Hidrolato de Allium fistulosum L. el contenido de fenoles y flavonoides totales.

Palavras-chave


acetogeninas; aceite esencial; hidrolato; extracto polar

Texto completo:

PDF (English)

Referências


Arevalo, A.; Bacca, T.; Soto G, A. Diagnóstico del uso y manejo de plaguicidas en fincas productoras de cebolla junca Allium fistulosum en el municipio de Pasto. Luna Azul, n.38, p.132–145, 2014. http://www.scielo.org.co/scielo.php?pid=S1909-24742014000100008&script=sci_arttext&tlng=en. 01 Apr. 2019.

Azazy, A. M.; Abdelall, M. F. M.; El-Sappagh, I. A.; Khalil, A. E. H. Biological control of the onion thrips, Thrips tabaci Lindeman (Thysanoptera: Thripidae), in open fields using Egyptian entomopathogenic nematode isolates. Egyptian Journal of Biological Pest Control, v.28, n.1, article 27, 2018. https://doi.org/10.1186/s41938-017-0025-9.

Benkeblia, N. Antimicrobial activity of essential oil extracts of various onions (Allium cepa) and garlic (Allium sativum). LWT - Food Science and Technology, v.37, n.2, p. 263–268, 2004. https://doi.org/10.1016/j.lwt.2003.09.001.

Calderón-Oliver, M.; Escalona-Buendía, H. B.; Medina-Campos, O. N.; Pedraza-Chaverri, J.; Pedroza-Islas, R.; Ponce-Alquicira, E. Optimization of the antioxidant and antimicrobial response of the combined effect of nisin and avocado by products. LWT - Food Science and Technology, v 65, p. 46–52, 2016. https://doi.org/10.1016/j.lwt.2015.07.048.

Castro, L.; Alzate, M.; Guerrero, G. Estudio preliminar de la bioactividad de extractos de semillas de Annona cherimolia de la familia Annonaceae. Scientia et Technica, v.1, n. 44, p. 326–330, 2010. https://dialnet.unirioja.es/servlet/articulo?codigo=4584726. 09 Apr. 2019.

Celestino, F. N.; Pratissoli, D.; Machado, L. C.; Santos Junior, H. J. G.; Queiroz, V. T.; Mardgan, L. Control of coffee berry borer, Hypothenemus hampei (Ferrari) (Coleoptera: Curculionidae: Scolytinae) with botanical insecticides and mineral oils. Acta Scientiarum. Agronomy, v. 38, n.1, e27430, 2016. https://doi.org/10.4025/actasciagron.v38i1.27430.

Celis, Á.; Mendoza, C.; Pachón, M.; Cardona, J.; Delgado, W.; Cuca, L. E. Extractos vegetales utilizados como biocontroladores con énfasis en la familia Piperaceae. Una revisión. Agronomía Colombiana, v. 26, n. 1, p. 97–106, 2008. http://www.scielo.org.co/pdf/agc/v26n1/v26n1a12.pdf. 29 Mar. 2019.

Chang, T.; Jang, H.; Lin, W.; Duan, P. Antioxidant and antimicrobial activities of commercial rice wine extracts of Taiwanese Allium fistulosum. Food Chemistry, v. 190, p. 724–729, 2016. https://doi.org/10.1016/j.foodchem.2015.06.019.

Chaubey, M. K. Study of insecticidal properties of garlic, Allium sativum (Alliaceae) and bel, Aegle marmelos (Rutaceae) essential oils against Sitophilus zeamais L. (Coleoptera: curculionidae). Journal of Entomology, v. 14, n. 5, p. 191–198, 2017. https://doi.org/10.3923/je.2017.191.198.

Colom, O. A.; Neske, A.; Popich, S.; Bardón, A. Toxic effects of Annonaceous acetogenins from Annona cherimolia (Magnoliales: Annonaceae) on Spodoptera frugiperda (Lepidoptera: Noctuidae). Journal of Pest Science, v. 80, n. 1, p. 63–67, 2007. https://doi.org/http://dx.doi.org/10.1007/s10340-006- 0149-2.

Denloye, A. A. Bioactivity of powder and extracts from garlic, Allium sativum L. (Alliaceae) and spring onion, Allium fistulosum L. ( Alliaceae ) against Callosobruchus maculatus F. (Coleoptera: Bruchidae) on cowpea, Vigna unguiculata (L.) Walp (Leguminosae) seeds. Psyche, v. 2010, Article ID 958348, 2010. https://doi.org/10.1155/2010/958348.

Dos Santos, L.; Trindade, R.P.; Dos Santos, D. S.; Dos Santos, M.; Broglio, S. M.F.; Lemos, E. E. P. Effect of anonaceous extracts on Aphis gossypii (Glover, 1887) (Hemiptera: Aphididae) and selectivity to Eriopis connexa (Germar, 1824) (Coleoptera: Coccinellidae). Acta Scientiarum. Agronomy, v. 40, n. 1, e36267, 2018. https://doi.org/10.4025/actasciagron.v40i1.36267.

Egydio-Brandão, A. P. M.; Novaes, P.; Santos, D. Y. A. C. Alkaloids from Annona Review from 2005 to 2016. JSM Biochemistry & Molecular Biology, v. 4, n. 3, p. 1–12. 2017. https://www.jscimedcentral.com/Biochemistry/biochemistry-4-1031.pdf. 05 Apr. 2019.

Garrido, G.; Ortiz, M.; Pozo, P. Fenoles y flavonoides totales y actividad antioxidante de extractos de hojas de Lampaya medicinalis F. Phil. Journal of Pharmacy and Pharmacognosy Research, v. 1, n. 1, p. 30–38, 2013. http://jppres.com/jppres/pdf/vol1/1_1_30.pdf. 01 Apr. 2019.

Giraldo, A.; Guerrero, G. Rollinia mucosa (Jacq.) Baillon (Annonaceae) active metabolites as alternative biocontrol agents against the lace bug Corythucha gossypii (Fabricius): an insect pest. Universitas Scientiarum, v. 23, n. 1, p. 21–34, 2018. https://doi.org/10.11144/Javeriana.SC23-1.rmjb.

Gîtin, L.; Dinicə, R.; Neagu, C.; Dumitrascu, L. Sulfur compounds identification and quantification from Allium spp. fresh leaves. Journal of Food and Drug Analysis, v. 22, n. 4, p. 425–430, 2014. https://doi.org/10.1016/j.jfda.2014.04.002.

Grzybowski, A.; Tiboni, M.; da Silva, M. A. N.; Chitolina, R. F.; Passos, M.; Fontana, J. D. The combined action of phytolarvicides for the control of dengue fever vector, Aedes aegypti. Brazilian Journal of Pharmacognosy, v. 22, n. 3, p. 549–557, 2012. https://doi.org/10.1590/S0102-695X2012005000026.

Guzmán, S.; Palacios, M. Instrumentos de política para la gestión de Servicios ecosistémicos en agro-ecosistemas cebolleros de la cuenca del río Otún, Colombia. Recursos Naturales y Ambiente, v. 58, p. 51–58, 2018. http://repositorio.bibliotecaorton.catie.ac.cr/bitstream/handle/11554/6418/Instrumentos_depolitica_pdf.pdf?sequence=1&isAllowed=y. 05 Apr. 2019.

Kameoka, H.; Iida, H.; Hashimoto, S.; Miyazawa, M. Sulphides and furanones from steam volatile oils of Allium fistulosum and Allium chinense. Phytochemistry, v. 23, n. 1, p. 155–158, 1984. https://doi.org/10.1016/0031-9422(84)83097-6.

Khaliq, A.; Khan, A. A.; Afzal, M.; Tahir, H. M.; Raza, A. M.; Khan, A. M. Field Evaluation of selected botanicals and commercial synthetic insecticides against Thrips tabaci Lindeman (Thysanoptera: Thripidae) populations and predators in onion field plots. Crop Protection, v. 62, p.10–15, 2014. https://doi.org/10.1016/j.cropro.2014.03.019.

Lanzotti, V. The analysis of onion and garlic. Journal of Chromatography A, v. 1112, n. 2, p. 3–22, 2006. https://doi.org/10.1016/j.chroma.2005.12.016.

Lebedev, G.; Abo-Moch, F.; Gafni, G.; Ben-Yakir, D.; Ghanim, M. High-level of resistance to spinosad, emamectin benzoate and carbosulfan in populations of Thrips tabaci collected in Israel. Pest Management Science, v. 69, n. 2, p. 274–277, 2013. https://doi.org/10.1002/ps.3385.

Leite, G. L. D.; Silva, F. W. S.; Guanabens, R. E. M.; Fernandes, L. A.; Figueiredo, L. S.; Silva, L. F. NPK and flavonoids affecting insect populations in Dimorphandra mollis seedlings. Acta Scientiarum. Agronomy, v. 34, n. 1, p. 17–22, 2012. https://doi.org/10.4025/actasciagron.v34i1.11233.

Llana-Ruiz-Cabello, M.; Maisanaba, S.; Gutiérrez-praena, D.; Prieto, A. I.; Pichardo, S.; Jos, Á.; Moreno, F. J.; Cameán, A. M. Cytotoxic and mutagenic in vitro assessment of two organosulfur compounds derived from onion to be used in the food industry. Food Chemistry, v. 166, p. 423–431, 2015. https://doi.org/10.1016/j.foodchem.2014.06.058.

Martin, N. A.; Workman, P. J.; Butler, R. C. Insecticide resistance in onion thrips (Thrips tabaci) (Thysanoptera : Thripidae). New Zealand Journal of Crop and Horticultural Science, v. 31, n. 2, p. 99–106, 2003. https://doi.org/10.1080/01140671.2003.9514242.

McLaughlin, J. L. Paw paw and cancer: Annonaceous acetogenins from discovery to commercial products. Journal of Natural Products, v. 71, n. 7, p. 1311–1321, 2008. https://doi.org/10.1021/np800191t.

Moghadamtousi, S.; Fadaeinasab, M.; Nikzad, S.; Mohan, G.; Ali, H. M.; Kadir, H. A. Annona muricata (Annonaceae): a review of its traditional uses, isolated acetogenins and biological activities. International Journal of Molecular Sciences, v. 16, n. 7, p. 15625-15658, 2015. https://doi.org/10.3390/ijms160715625.

Murillo, J. Las Annonaceae de Colombia. Biota Colombiana, v. 2, n. 1, p. 49-58, 2001. http://www.redalyc.org/pdf/491/49120104.pdf. 29 Mar. 2019.

Nazemi, A.; Khajehali, J.; Van Leeuwen, T. Incidence and characterization of resistance to pyrethroid and organophosphorus insecticides in Thrips tabaci (Thysanoptera: Thripidae) in onion fields in Isfahan, Iran. Pesticide Biochemistry and Physiology, v. 129, p. 28–35, 2016. https://doi.org/10.1016/j.pestbp.2015.10.013.

Nwankwo, E. N.; Okonkwo, N. J.; Ogbonna, C. U.; Akpom, C. J. O.; Chukwudi, M. Moringa oleifera and Annona muricata seed oil extracts as biopesticides against the second and fourth larval instar of Aedes aegypti L. (Diptera: Culicidae). Journal Biopest, v. 8, n. 1, p. 56–61, 2015. http://www.jbiopest.com/users/LW8/efiles/vol_8_1_56-61.pdf. 01 Apr. 2019.

Ortiz, R.; Gonzáles, C.; Castaño, J. Etiología de la punta blanca de la cebolla (Allium fistulosum L.) en la granja tesorito, Manizales - Caldas. Revista de La Academia Colombiana de Ciencias Exactas, Fisicas y Naturales, v. 36, n. 140, p. 365–372. 2012. https://www.researchgate.net/publication/262504462. 10 Apr. 2019.

Patil, V.V.; Kabre, G.B.; Dixit, S.S.; Desale, S.B. Evaluation of entomophathogenic fungi against onion thrips, Thrips tabaci (Lindeman). International Journal of Plant Protection, v. 9, n. 1, p. 168–171, 2016. https://doi.org/10.15740/HAS/IJPP/9.1/168-171.

Pereira, J. A.; Pereira, A. P.; Ferreira, I. C.; Valentão, P.; Andrade, P. B.; Seabra, R.; Estevinho, L.; Bento, A. Table olives from Portugal: phenolic compounds, antioxidant potential, and antimicrobial activity. Journal of Agricultural and Food Chemistry, v. 54, n. 22, p. 8425–8431, 2006. https://doi.org/10.1021/jf061769j.

Pino, O.; Sánchez, Y.; Rojas, M. M. Plante metabolitos secundarios como alternativas en el manejo de plagas. II: una visión general de su potencial en Cuba. Revista de Protección Vegetal, v. 28, n. 2, p. 95–108, 2013. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1010-27522013000200002. 29 Mar. 2019.

Plata-Rueda, A.; Martínez, L. C.; Santos, M. H.D.; Fernandes, F. L.; Wilcken, C. F.; Soares, M. A.; Serrao. J.E.; Zanuncio, J. C. Insecticidal activity of garlic essential oil and their constituents against the mealworm beetle, Tenebrio molitor Linnaeus (Coleoptera: Tenebrionidae). Scientific Reports, v. 7, article 46406, 2017. https://doi.org/10.1038/srep46406.

Pyun, M.; Shin, S. Ã. Antifungal effects of the volatile oils from Allium plants against Trichophyton species and synergism of the oils with ketoconazole. Phytomedicine, v. 13, n. 6, p. 394–400, 2006. https://doi.org/10.1016/j.phymed.2005.03.011.

RAPAL Uruguay. Contaminación y eutrofización del agua Impactos del modelo de agricultura industrial. Montevideo: RAPAL Uruguay, 2010. 36p. http://www.rapaluruguay.org/agrotoxicos/Uruguay/Eutrofizacion.pdf. 10 Mar. 2019. Rattan, R. S. Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Protection, v. 29, n. 9, p. 913–920, 2010. https://doi.org10.1016/j.cropro.2010.05.008.

Roldán, E.; Sánchez-Moreno, C.; Ancos, B. D. E. Subproductos de cebolla como ingredientes alimentarios con propiedades antioxidantes e inhibidoras del pardeamiento enzimático. In: Congreso Iberoamericano de Tecnologia Postcosecha y Agroexportaciones, 5., 2007, Cartagena. Anales… Curico: Universidad Católica del Maule; Cartagena: Universidad Politécnica de Cartagena, 2007. v. 1, p. 559–570.

Sang, S.; Lao, A.; Wang, Y.; Chin, C.K.; Rosen, R. T.; Ho, C.T. Antifungal constituents from the seeds of Allium fistulosum L. Journal of Agricultural and Food Chemistry, v. 50, n. 22, p. 6318–6321, 2002. https://doi.org/10.1021/jf025651o.

Satyanarayana, P.; Singh, P. Relative field efficacy of botanicals, bio-pesticides and synthetic insecticides against thrips (Thrips tabaci Lind) on onion. Journal of Experimental Zoology, v. 19, n. 1, p. 191–194, 2016. http://www.connectjournals.com/achivestoc2.php?fulltext=2430801H_191-194.pdf&&bookmark=CJ-033215&&issue_id=01&&yaer=2016. 07 Apr. 2019.

Soto, V. C.; Maldonado, I. B.; Jofré, V. P.; Galmarini, C. R.; Silva, M. F. Direct analysis of nectar and floral volatile organic compounds in hybrid onions by HS-SPME/GC-MS: Relationship with pollination and seed production. Microchemical Journal, v. 122, p. 110–118, 2015. https://doi.org/10.1016/j.microc.2015.04.017.

Souza, C. M.; Baldin, E. L. L.; Ribeiro, L. P.; Silva, I. F.; Morando, R.; Bicalho, K. U.; Vendramim, J.D.; Fernandes, J. B. Lethal and growth inhibitory activities of Neotropical Annonaceae-derived extracts, commercial formulation, and an isolated acetogenin against Helicoverpa armigera. Journal of Pest Science, v. 90, n. 2, p. 701–709, 2017. https://doi.org/10.1007/s10340-016-0817-9.

Tada, M.; Hiroe, Y.; Kiyohara, S.; Suzuki, S. Nematicidal and antimicrobial constituents from Allium grayi Regel and Allium fistolosum L. var. caespitosum. Agricultura and Biological Chemestry, v. 52, n. 9, p. 2383–2385, 1988. https://doi.org/10.1080/00021369.1988.10869050.

Walsh, S. E.; Maillard, J. Y.; Russel, A. D.; Catrenich, C. E.; Charbonneau, A. L.; Bartolo, R. G. activity and mechanism of action of selected biocidal agents on gram -positive and -negative bacteria. Journal of Applied Microbiology, v. 94, n.2, p. 240–247, 2003. https://doi.org/10.1046/j.1365-2672.2003.01825.x.

Zamar, M. I.; Arce de Hamity, M. G.; Andrade, A.; Amendola de Olsen, A.; Hamity, V. Efecto de productos no convencionales para el control de Thrips tabaci (Thysanoptera: Thripidae) en el cultivo de Ajo (Allium sativum) en la Quebrada de Humahuaca (Jujuy-Argentina). Idesia, v. 25, n. 3, p. 41–46, 2007. https://doi.org/10.4067/S0718-34292007000300005.


Apontamentos

  • Não há apontamentos.


Direitos autorais 2020 Ana Isabel Giraldo Rivera, Gloria Edith Guerrero Alvarez, Juan Pablo Arrubla, Luz Marina Baena, Diego Paredes Cuerco

SCImago Journal & Country Rank

Google Scholar

2019

h5 index: 10

h5 median: 14

Mais detalhes

Revista Brasileira de Ciências Agrárias (Agrária)

ISSN (ON LINE) 1981-0997

Pró-Reitoria de Pesquisa e Pós-Graduação

Universidade Federal Rural de Pernambuco

Rua Dom Manoel de Medeiros, s/n, Dois Irmãos Recife-Pernambuco-Brasil 52171-900

agrarias.prppg@ufrpe.br

secretaria@agraria.pro.br

 Licença Creative Commons
Todo o conteúdo da Agrária, exceto onde está identificado, está licenciado sob uma licença Creative Commons.